Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Med Virol ; 95(6): e28863, 2023 06.
Article in English | MEDLINE | ID: covidwho-20238042

ABSTRACT

The ongoing COVID-19 has not only caused millions of deaths worldwide, but it has also led to economic recession and the collapse of public health systems. The vaccines and antivirals developed in response to the pandemic have improved the situation markedly; however, the pandemic is still not under control with recurring surges. Thus, it is still necessary to develop therapeutic agents. In our previous studies, we designed and synthesized a series of novel 2-anilinoquinazolin-4(3H)-one derivatives, and demonstrated inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and MERS-CoV in vitro. We then conducted in vivo studies using modified compounds that are suitable for oral administration. These compounds demonstrated no toxicity in rats and inhibited viral entry. Here, we investigated the in vivo efficacy of these drug candidates against SARS-CoV-2. Three candidate drugs, 7-chloro-2-((3,5-dichlorophenyl)amino)quinazolin-4(3H)-one (1), N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-dichlorophenyl)acetamide (2), and N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-difluorophenyl)acetamide (3) were administered orally to hACE2 transgenic mice at a dose of 100 mg/kg. All three drugs improved survival rate and reduced the viral load in the lungs. These results show that the derivatives possess in vivo antiviral efficacy similar to that of molnupiravir, which is currently being used to treat COVID-19. Overall, our data suggest that 2-anilinoquinazolin-4(3H)-one derivatives are promising as potential oral antiviral drug candidates against SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Rats , Acetamides , Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/therapy , Disease Models, Animal , Mice, Transgenic , Quinazolines/pharmacology , Quinazolines/therapeutic use , SARS-CoV-2/genetics
2.
Bioorg Med Chem Lett ; 85: 129214, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2281197

ABSTRACT

The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to threaten human health and create socioeconomic problems worldwide. A library of 200,000 small molecules from the Korea Chemical Bank (KCB) were evaluated for their inhibitory activities against SARS-CoV-2 in a phenotypic-based screening assay to discover new therapeutics to combat COVID-19. A primary hit of this screen was the quinolone structure-containing compound 1. Based on the structure of compound 1 and enoxacin, which is a quinolone-based antibiotic previously reported to have weak activity against SARS-CoV-2, we designed and synthesized 2-aminoquinolone acid derivatives. Among them, compound 9b exhibited potent antiviral activity against SARS-CoV-2 (EC50 = 1.5 µM) without causing toxicity, while having satisfactory in vitro PK profiles. This study shows that 2-aminoquinolone acid 9b provides a promising new template for developing anti-SARS-CoV-2 entry inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation , Protease Inhibitors
3.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 04.
Article in English | MEDLINE | ID: covidwho-1917682

ABSTRACT

We previously reported the potent antiviral effect of the 2-aminoquinazolin-4-(3H)-one 1, which shows significant activity (IC50 = 0.23 µM) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with no cytotoxicity. However, it is necessary to improve the in vivo pharmacokinetics of compound 1 because its area under the curve (AUC) and maximum plasma concentration are low. Here, we designed and synthesized N-substituted quinazolinone derivatives that had good pharmacokinetics and that retained their inhibitory activity against SARS-CoV-2. These compounds were conveniently prepared on a large scale through a one-pot reaction using Dimroth rearrangement as a key step. The synthesized compounds showed potent inhibitory activity, low binding to hERG channels, and good microsomal stability. In vivo pharmacokinetic studies showed that compound 2b had the highest exposure (AUC24h = 41.57 µg∙h/mL) of the synthesized compounds. An in vivo single-dose toxicity evaluation of compound 2b at 250 and 500 mg/kg in rats resulted in no deaths and an approximate lethal dose greater than 500 mg/kg. This study shows that N-acetyl 2-aminoquinazolin-4-(3H)-one 2b is a promising lead compound for developing anti-SARS-CoV-2 agents.

4.
Bull Korean Chem Soc ; 43(3): 412-416, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1650887

ABSTRACT

Despite the continuing global crisis caused by coronavirus disease 2019 (COVID-19), there is still no effective treatment. Therefore, we designed and synthesized a novel series of 2-benzylaminoquinazolin-4(3H)-one derivatives and demonstrated that they are effective against SARS-CoV-2. Among the synthesized derivatives, 7-chloro-2-(((4-chlorophenyl)(phenyl)methyl)amino)quinazolin-4(3H)-one (Compound 39) showed highest anti-SARS-CoV-2 activity, with a half-maximal inhibitory concentration value greater than that of remdesivir (IC50 = 4.2 µM vs. 7.6 µM, respectively), which gained urgent approval from the U.S. Food and Drug Administration. In addition, Compound 39 showed good results in various assays measuring metabolic stability, human ether a-go-go, Cytochromes P450 (CYPs) inhibition, and plasma protein binding (PPB), and showed better solubility and pharmacokinetics than our previous work.

5.
Bioorg Med Chem Lett ; 39: 127885, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1116317

ABSTRACT

Despite the rising threat of fatal coronaviruses, there are no general proven effective antivirals to treat them. 2-Aminoquinazolin-4(3H)-one derivatives were newly designed, synthesized, and investigated to show the inhibitory effects on SARS-CoV-2 and MERS-CoV. Among the synthesized derivatives, 7-chloro-2-((3,5-dichlorophenyl)amino)quinazolin-4(3H)-one (9g) and 2-((3,5-dichlorophenyl)amino)-5-hydroxyquinazolin-4 (3H)-one (11e) showed the most potent anti-SARS-CoV-2 activities (IC50 < 0.25 µM) and anti-MERS-CoV activities (IC50 < 1.1 µM) with no cytotoxicity (CC50 > 25 µM). In addition, both compounds showed acceptable results in metabolic stabilities, hERG binding affinities, CYP inhibitions, and preliminary PK studies.


Subject(s)
Antiviral Agents/chemical synthesis , Drug Design , Middle East Respiratory Syndrome Coronavirus/drug effects , Quinazolinones/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/virology , Cell Line , Cell Survival/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Half-Life , Humans , Inhibitory Concentration 50 , Mice , Microsomes/metabolism , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Quinazolinones/chemistry , Quinazolinones/metabolism , Quinazolinones/therapeutic use , Rats , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , COVID-19 Drug Treatment
6.
Bioorg Med Chem Lett ; 31: 127667, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-907172

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) continues to spread worldwide, with 25 million confirmed cases and 800 thousand deaths. Effective treatments to target SARS-CoV-2 are urgently needed. In the present study, we have identified a class of cyclic sulfonamide derivatives as novel SARS-CoV-2 inhibitors. Compound 13c of the synthesized compounds exhibited robust inhibitory activity (IC50 = 0.88 µM) against SARS-CoV-2 without cytotoxicity (CC50 > 25 µM), with a selectivity index (SI) of 30.7. In addition, compound 13c exhibited high oral bioavailability (77%) and metabolic stability with good safety profiles in hERG and cytotoxicity studies. The present study identified that cyclic sulfonamide derivatives are a promising new template for the development of anti-SARS-CoV-2 agents.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , SARS-CoV-2/drug effects , Sulfonamides/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Chlorocebus aethiops , Cricetulus , Dogs , Dose-Response Relationship, Drug , Humans , Mice , Microbial Sensitivity Tests , Molecular Structure , Rats , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , COVID-19 Drug Treatment
7.
Eur J Med Chem ; 187: 111956, 2020 Feb 01.
Article in English | MEDLINE | ID: covidwho-733871

ABSTRACT

We have reported on aristeromycin (1) and 6'-fluorinated-aristeromycin analogues (2), which are active against RNA viruses such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), Zika virus (ZIKV), and Chikungunya virus (CHIKV). However, these exhibit substantial cytotoxicity. As this cytotoxicity may be attributed to 5'-phosphorylation, we designed and synthesized one-carbon homologated 6'-fluorinated-aristeromycin analogues. This modification prevents 5'-phosphorlyation by cellular kinases, whereas the inhibitory activity towards S-adenosyl-l-homocysteine (SAH) hydrolase will be retained. The enantiomerically pure 6'-fluorinated-5'-homoaristeromycin analogues 3a-e were synthesized via the electrophilic fluorination of the silyl enol ether with Selectfluor, using a base-build up approach as the key steps. All synthesized compounds exhibited potent inhibitory activity towards SAH hydrolase, among which 6'-ß-fluoroadenosine analogue 3a was the most potent (IC50 = 0.36 µM). Among the compounds tested, 6'-ß-fluoro-homoaristeromycin 3a showed potent antiviral activity (EC50 = 0.12 µM) against the CHIKV, without noticeable cytotoxicity up to 250 µM. Only 3a displayed anti-CHIKV activity, whereas both3a and 3b inhibited SAH hydrolase with similar IC50 values (0.36 and 0.37 µM, respectively), which suggested that 3a's antiviral activity did not merely depend on the inhibition of SAH hydrolase. This is further supported by the fact that the antiviral effect was specific for CHIKV and some other alphaviruses and none of the homologated analogues inhibited other RNA viruses, such as SARS-CoV, MERS-CoV, and ZIKV. The potent inhibition and high selectivity index make 6'-ß-fluoro-homoaristeromycin (3a) a promising new template for the development of antivirals against CHIKV, a serious re-emerging pathogen that has infected millions of people over the past 15 years.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , Chikungunya virus/drug effects , Adenosine/chemical synthesis , Adenosine/chemistry , Adenosine/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Virus Replication/drug effects
8.
Bioorg Med Chem Lett ; 30(20): 127472, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-726039

ABSTRACT

New therapies for treating coronaviruses are urgently needed. A series of 4-anilino-6-aminoquinazoline derivatives were synthesized and evaluated to show high anti-MERS-CoV activities. N4-(3-Chloro-4-fluorophenyl)-N6-(3-methoxybenzyl)quinazoline-4,6-diamine (1) has been identified in a random screen as a hit compound for inhibiting MERS-CoV infection. Throughout optimization process, compound 20 was found to exhibit high inhibitory effect (IC50 = 0.157 µM, SI = 25) with no cytotoxicity and moderate in vivo PK properties.


Subject(s)
Aniline Compounds/pharmacology , Antiviral Agents/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Quinazolines/pharmacology , Aniline Compounds/chemical synthesis , Aniline Compounds/pharmacokinetics , Aniline Compounds/toxicity , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Antiviral Agents/toxicity , Cell Line , Chlorocebus aethiops , Cricetulus , Humans , Mice , Microbial Sensitivity Tests , Molecular Structure , Quinazolines/chemical synthesis , Quinazolines/pharmacokinetics , Quinazolines/toxicity , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL